Exercise 4

Let C denote the positively oriented circle $|z|=2$ and evaluate the integral
(a) $\int_{C} \tan z d z$;
(b) $\int_{C} \frac{d z}{\sinh 2 z}$.
Ans. (a) $-4 \pi i$; (b) $-\pi i$.

Solution

Part (a)
The singularities of the integrand,

$$
\tan z=\frac{\sin z}{\cos z},
$$

occur where the denominator is zero.

$$
\cos z=0 \quad \rightarrow \quad z=\frac{1}{2}(2 n-1) \pi, \quad n=0, \pm 1, \pm 2, \ldots
$$

The ones we care about are those that lie within the circle $|z|=2: z=-\pi / 2$ and $z=\pi / 2$. According to Cauchy's residue theorem, the closed loop integral over this circle is equal to $2 \pi i$ times the sum of the residues inside it.

$$
\oint_{C} \tan z d z=2 \pi i\left(\underset{z=-\pi / 2}{\mathrm{Res}} \tan z+\mathrm{Res}_{z=\pi / 2}^{\mathrm{Res}} \tan z\right)
$$

The residues at $z= \pm \pi / 2$ can be calculated by

$$
\underset{z= \pm \pi / 2}{\operatorname{Res}} \tan z=\underset{z= \pm \pi / 2}{\operatorname{Res}} \frac{\sin z}{\cos z}=\frac{p(\pm \pi / 2)}{q(\pm \pi / 2)},
$$

where $p(z)$ is set to be the function in the numerator and $q(z)$ is set to be the function in the denominator.

$$
\begin{array}{llll}
p(z)=\sin z & & \Rightarrow & p\left(\pm \frac{\pi}{2}\right)=\sin \left(\pm \frac{\pi}{2}\right)= \pm 1 \\
q(z)=\cos z & \rightarrow & q^{\prime}(z)=-\sin z & \Rightarrow
\end{array} q^{\prime}\left(\pm \frac{\pi}{2}\right)=-\sin \left(\pm \frac{\pi}{2}\right)=\mp 1 .
$$

So then

$$
\begin{aligned}
\oint_{C} \tan z d z & =2 \pi i\left(\frac{-1}{1}+\frac{1}{-1}\right) \\
& =2 \pi i(-2) .
\end{aligned}
$$

Therefore,

$$
\oint_{C} \tan z d z=-4 \pi i .
$$

Part (b)

The singularities of the integrand,

$$
\frac{1}{\sinh 2 z},
$$

occur where the denominator is zero.

$$
\begin{aligned}
\sinh 2 z & =0 \\
-i \sin 2 i z & =0 \\
2 i z & =n \pi \quad \rightarrow \quad z=-\frac{i n \pi}{2}, \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

The ones we care about are those that lie within the circle $|z|=2: z=0, z=-i \pi / 2$, and $z=i \pi / 2$. According to Cauchy's residue theorem, the closed loop integral over this circle is equal to $2 \pi i$ times the sum of the residues inside it.

$$
\oint_{C} \frac{d z}{\sinh 2 z}=2 \pi i\left(\operatorname{Res}_{z=-i \pi / 2} \frac{1}{\sinh 2 z}+\operatorname{Res}_{z=0} \frac{1}{\sinh 2 z}+\operatorname{Res}_{z=i \pi / 2} \frac{1}{\sinh 2 z}\right)
$$

The residues at $z= \pm i \pi / 2$ and $z=0$ can be calculated by

$$
\begin{aligned}
\operatorname{Res}_{z= \pm i \pi / 2} \frac{1}{\sinh 2 z} & =\frac{p(\pm i \pi / 2)}{q(\pm i \pi / 2)} \\
\operatorname{Res}_{z=0} \frac{1}{\sinh 2 z} & =\frac{p(0)}{q(0)}
\end{aligned}
$$

where $p(z)$ is set to be the function in the numerator and $q(z)$ is set to be the function in the denominator.

$$
\begin{aligned}
& p(z)=1 \quad \Rightarrow\left\{\begin{aligned}
p\left(\pm \frac{i \pi}{2}\right) & =1 \\
p(0) & =1
\end{aligned}\right. \\
& q(z)=\sinh 2 z \quad \rightarrow \quad q^{\prime}(z)=2 \cosh 2 z \quad \Rightarrow \quad\left\{\begin{array}{c}
q^{\prime}\left(\pm \frac{i \pi}{2}\right)=2 \cosh (\pm i \pi)=2 \cos \pi=-2 \\
q^{\prime}(0)=2 \cosh 0=2
\end{array}\right.
\end{aligned}
$$

So then

$$
\begin{aligned}
\oint_{C} \frac{d z}{\sinh 2 z} & =2 \pi i\left(\frac{1}{-2}+\frac{1}{2}+\frac{1}{-2}\right) \\
& =2 \pi i\left(-\frac{1}{2}\right) .
\end{aligned}
$$

Therefore,

$$
\oint_{C} \frac{d z}{\sinh 2 z}=-\pi i .
$$

